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ABSTRACT 4

/The motion of a two-dimensional bubble rising at a constant velocity U

in a tube of width h is considered. The acceleration of gravity g and the

surface tension T are included in the dynamic boundary condition. For T =

0, the results of Garabedian and Vanden-Broeck show that a solution exists
racrok bl ke 4 P

for all values of the Froude number F = U/(gl'l)"l’2 smaller than a critical
Ty wrea i to -
value Fc % 0.36. In this paper accurate numerical solutions with T,x 0 are g

computed by series truncations. The results show that for each value of
L€ 2 e

T # 0, there exists a countably infinite number of solutions. Each of these

!' [}

solutions corresponds to a different value of F. As T tends to zero, all

these solutions approcach a unique limiting solution characterized by

LR z

F = F* ~ 0.23, Therefore, the degenerancy associated with T = 0 is removed

l.'

by including the effect of surface tension. In addition the profile corre-

sponding to F = F* is found to be in good agreement with experimental data.
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SIGNIFICANCE AND EXPLANATION

The motion of a two-dimensional bubble rising at a constant velocity U
in a tube of width h is considered (see Figure 1). The acceleration of the
gravity g and the surface tension T are included in the formulation of the
problem. For T = O, Garabedian! and Vanden-Broeck? have shown that a
solution exists for all values of F smaller than a critical value F..
Garabedian1 used a stability argument to suggest that the only physically
acceptable solution is the one corresponding to F = F . Vanden-Broeck?
solved the problem with T = 0 numerically. He found that F_ = 0.36. This
value is about forty percent higher than the experimental value of 0.25 of
Collins3.

In the present paper we show that the discrepancy between the theoretical
value 0.36 and the experimeﬁtal value 0.25 is considerably reduced by taking
into account the effect of surface tension. We show that for each value of
T # 0, there exists a countably infinite number of solutions. As T tends
to zero, all these solutions approach a unique limiting configuration
characterized by F = F* ~ 0.23.

These results imply that the physically revelant solution, when T = 0,
is not the solution corresponding to F = Fc ~ 0.36 but the soltuion

corresponding to F = F* ~ 0.23.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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RISING BUBBLES IN A TWO-DIMENSIONAL TUBE WITH SURFACE TENSION

Jean-Marc Vanden-Broeck

I. Introduction

We consider a bubble rising at a constant velocity U in a two-~

dimensional tube of width h. We choose a frame of reference moving with the

bubble and we assume that the bubble extends downwards without limit (see Fig.
1.)

hl As we shall see the problem is characterized by the Froude number

U

F= (1)
(gh) /2

and the Weber number

pUzh

a = T

(2)
Here g 1is the acceleration of gravity, T the surface tension and p the
density of the fluid.

Garabedian [1] considered the problem with T = 0 (i.e. a = ®»). He
presented analytical evidence that a solution exists for all values of F

smaller than a critical value F

e+ He then used an energy argument to suggest

that the only physically significant solution is the one for which F = Fee.

In addition he showed that F, > 0.2363 and guessed the value Fo = 0.24.

| I
Birkhoff and Carter (2] and Collins [3) using different approaches obtained
the value 0.23.
Vanden-Broeck (4] solved the problem with T = 0 numerically. His 2
results confirm that a solution exists for all values of F smaller than a
d Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and »

the National Science Foundation under Grant No. MCS~-R001960.
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critical value F,, However Vanden-Broeck's results do not support the
approximate calculations of Garab;dian (1], Birkhoff and Carter (2] and
Collines [3]. Vanden-Broeck found F_ = 0.36. This value is about forty
percent higher than the experimental value 0.25 presented by Collins (3].

In the present paper we show that the discrepancy between the
experiemntal value F = 0.25 and the theoretical value F. = 0.36 is
considerably reduced by taking into account the effect of surface tension. We
show that for each value of T # 0, there exists a countably infinite number
of solutions. Each of these solutions corresponds to a different value of
F. As T tends to zero, all these solutions approach a unique limiting
configuration characterized by F = F* ~ 0.23., The corresponding profile is
found to be in good agreement with the experimental data of Collins [3].

It is interesting to note that the present inviscid problem is
qualitatively similar to the problem of viscous flow in a Hele-Shaw cell
(Saffman and Taylor (5], MclLean and Saffman {6], Vanden-Broeck [7)). Both
problems are characterized by a continuum of solutions for T =0 and a
discrete set of solutions for T > 0.

The problem is formulated in Sec. II. The numerical procedure is

described in Sec. III and the results are discussed in Sec. 1IV.
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II. Formulation -
Let us consider the steady two-dimensional potential flow of an invisciad ‘ :
incompressible fluid past a bubble in a tube of width h (see Fig. 1). The : ;;_ﬁj
pressure in the bubble is assumed to be constant. We introduce cartesian * 1
coordinates with the origin at the top of the bubble and we assume that the ]
bubble is symmetric about the x-axis. Gravity acts in the negative x- ;,__J

direction. As x + ®, the velocity approaches the constant U.

We define dimensionless variables by taking U as the unit velocity

and h as the unit length. We denote the potential function by ¢ and the
stream function by . 1In addition we introduce the complex velocity by
g =u = iv and we define the function T - i8 by the relation

=u-iv = eT-ie (3)

Without loss of generality we choose ¢ = 0 at x =y =0 and ¢y = 0
on the surface of the bubble. It follows from the choice of the dimensionless
variables that ¢ = - %- on the wall y = %m

We satisfy the kinemetic condition on the wall y = %q by reflecting the
flow in that boundary (see Fig. 1). We shall seek the complex function
T - 10 as an analytic function of £ = ¢ + iy in the strip -1 < ¢ < 0. The

complex plane is sketched in Fig. 2.

On the surface of the bubble, the Bernoulli equation yields

1/2 q2+gx-%l(=3 on SJ and S'J'. (4) ,

Here q 1is the flow speed, K the curvature of the free surface and B the

Bernoulli constant. 1In dimensionless variables (4) becomes . '.
- -4
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- == on SJ and S'J*'. (5)

Here F and a are the Froude number and the Weber number defined by (1) and

{(2) respectively.

It is convenient to eliminate x and B from (5) by differentiating (5)

with respect to ¢. Using the relation

3 , 3y 1 -THi6
3% T 9 " wiv °© (6)
we obtain
2T 9T 1 -1 19 T 96
e —$-+ ;Ee cos 6 e sz{e T 0 on SJ and §'J'. (7)

The kinemetic conditions on IS and IS' yield

=0, ¥y==1 ¢$<0 (8)

=0, =0 ¢ < 0. (9)

Finally the flow configuration of Fig. 1 is characterized by a stagnation
point and a horizontal slope at the top of the bubble. This yields the

additional conditions

r--‘-,es% at ¢ =0, 9 =0 (10)

r--n»,e--‘E' at ¢ =0, ¢ = ~1. (11)

This completes the formulation of the problem of determining T - if.
This function must he analytic in the strip -1 < y < 0 and satisfy the

conditions (7)=-(11).




III. Numerical Procedure

We solve the problem by using the procedure derived by Vanden-Broeck [7]
to investigate the effect of surface tension on the shape of fingers in a

Hele-Shaw cell. Thus we define a modified problem by replacing (10) and (11)

by

T= =0 O =1y at ¢ =0, p =0 (12)

T= =0 O=-y at $=0, = -1, (13)

Here Y 1is a parameter to be found as part of the solution.

We will solve the modified problem defined by (7)=-(9), (12) and (13), and
obtain solutions for all values of F and a. Then we will obtain the
solutions of the original problem by selecting among the solutions of the

modified problem those for which Y = %u

Following Birkhoff and Carter [2] and Vanden~Broeck [7) we define the new

variable ¢t by the relation
-nf 1 1
= + -
e EJt ) (14)

This transformation maps the flow domain onto the unit circle in the complex

t-plane (see Fig. 3).
We note that
/3

1
T~ [An(1 & 1it)] as t + 41

L~ (1 a& v)Y /7 as t > + 1

(see Birkhoff and Carter (2] for details). Therefore we define the function

fi{t) by the relation

9
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g = ~[-2n c(1+¢2)173(=tn &)"V3(1-t2)Y 2T s(e)1. (15)

Hexre C 1is an arbitrary constant between 0 and 0.5, We choose C = 0.2. The
function Q(t) is bounded and continuous on the unit circle and analytic in
the interior. The conditions (8) and (9) show that {i(t) can be expanded in

the form of a Taylor expansion in even powers of t. Hence

a
" o ian c(1462) V3 (can )V (1-£3)Y (e ) antzn) (16)
n=1

The function (16) satisfy (8), (9), (12) and (13). The coefficients a, and

the parameter Y have to be determined to satisfy (7) on §SJ. The condition
(7) on S'J' will then be automatically satisfied by symmetry.

We use the notation ¢t = ]tleio so0 that points on SJ are given by

t = eio' 0 <o < %u Using (14) we rewrite (7) in the form
2TdT 1 =T~ 1.2 d, T L L]
mcotgOe 3o + ;E e cosf =" cotgqo 'd—'o'(e cotgo d_o) 0 (17)

Here ?(a) and 3(0) denote the values of T and 6 on the free surface

SJ.

We solve the problem approximately by truncating the infinite series in

(16) after N-1 terms. We find the N-1 coefficients a, and the parameter

Y by collocation. Thus we introduce the N mesh points

m 1
= e — = s . 1
CI 2N(I 2)' I L 'N ( 8)
Using (16) and (18) we obtain [?(a)] [5(0)] [d?] [dg]
g o=0_"' o=¢_' ‘do'o=0_.’' ‘d0 o=¢0
o I 1 I 1
d°e
and [—3l _.  in terms of the coefficients a, and the parameter vy.
do I

-9~
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Substituting these expressions into (16) we obtain N nonlinear equations for
the N unknowns an, n=1.,.,,N1 and Y. We solve this system by
Newton's method. Once this system is solved for a given value of F, the

shape of the jet is obtained by numerically integrating (8&).
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IV. Discussion of the results :
We use the numerical scheme do-cribod in Sec. III to compute solutions of
the modified problem for various values of F and a. The coefficients ap s
were found to decrease rapidly a n increases. For example
a .~ 10-2, a, ~ 2.10-3, a3, ~ 3.107% for ¥? = 0.02 and a = 10. Most of j
k‘ the calculations were done with N = 50. i--hi
| In Figure 4 we present values of Y versus F for o = 10. As F ‘
hj tends to infinity, Y tends to zero. As F approaches zero, Y oscillates
infinitely often around gu Figure 4 shows that there exists a countably ; )
infinite number of values of F for which y = %u The solutions corre- |
sponding to these values of F are the solutions of the original problem.
Similar results were found for other values of a. i"" :
Vanden-Broeck solved the problem with a = ®, (i.e., T = 0). He found |
§
Y =3 F<F_~0.36 (19) !“"J
Y=0, F> Fc ~ 0,36. (20)
|
Therefore all the solutions corresponding to F < F, are solutions of the P j
modified problem when a = ®, The solution defined by (19) and (20) is shown . {
in Fig. 4.
The flow configuration of Fig. 1 can also serve to model a jet emerging .
from a nozzle whose walls consist of the streamlines IS and IS' (see
vanden-Broeck [2]). Relation (20) shows that the flow leaves the wall tan-
gentially for @ = ® and F > Foe On the other hand Fig. 4 indicates that »
the flow does not leave the walls tangentially for a = 10 unless F = =, .
Similar discontinuities in slope were encountered before by Vanden-Broeck
: {6,7] in his analysis of the effect of surface tension on free-streamline ® ;_
-]1l-
"
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3 flows. The recent work of Vanden~Broeck [10] shows that these unphysical y
E discontinuities could be removed by taking into account the thickness of the 1
E ' walls and the finite curvature at the ends of the walls. ;"J'
; As a increases, the amplitudes and the wavelengths of the oscillations 1
in Figure 4 decrease. In Fig. 5 we present the two largest values of F, :
L which correspond to solutions of the original problem, as functions of Q-1- i———-
The two curves approach F = F* ~ 0.23 as a tends to infinity. | ]
Our numerical results suggest the following general result. If n .
L denotes an arbitrary positive integer, then the nth largest value of F, i «
which corresponds to a solution of the original problem, approaches ;
F=F*~ 0,23 as a + @, Therefore the degenerancy associated with T = 0
is removed by solving the problem with T # 0 and then by taking the limit as i :
T+ 0. 4
These results imply that the physically relevent solution, when T = 0, :
is not the solution corresponding to F = Fc ~ 0.36 but the solution ;““":
corresponding to P = F* ~ 0,23, The profile corresponding to F = F* and
T=0 1is shown in Figure 6. .
Collim3 found the experimental value F = 0.25. 1In addition he measured . i
the ratio of the radius of curvature at the top of the bubble to the width . T
h of the tube and obtained the value 0.305. The corresponding ratio for the |
theoretical profile of Fig. 6 is 0.32.
v
| .
=-13-
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‘OTS -0.25 O

Bubble profile for F = P* ~ 0.23.

0.25

and T = 0,
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h (4]
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